Skip to content

nested-lookupvskiba

Public Domain - 2 209
485.5 thousand (month) Feb 09 2022 0.2.25(2 years ago)
1,753 1 - LGPL-3.0
Apr 18 2015 21.3 thousand (month) 4.0.0(3 years ago)

nested-lookup is a convenient way to parse multi-depth JSON documents which are often encountered in web scraping. Using nested-lookup we can easily extract deeply nested data-field just by providing key value.

The library provides a number of functions for searching and extracting data from nested dictionaries, including:

  • nested_lookup: search for a key within a nested dictionary and returns the associated value.
  • nested_update: update a key-value pair within a nested dictionary.
  • nested_has: check if a key exists within a nested dictionary.
  • nested_values: returns all the values within a nested dictionary, including values within nested dictionaries.

The library is designed to be flexible and can work with dictionaries of any size and structure, making it a useful tool for working with complex and nested data structures.

Kiba is a lightweight Ruby gem that provides a simple and powerful way to process and transform data in an ETL (Extract, Transform, Load) pipeline. It allows you to define a set of operations to perform on the data, and then automatically applies those operations to the data, making it easy to extract, transform, and load data from various sources and formats.

Kiba provides a simple and intuitive API for defining the pipeline, and it is built on top of the Enumerator API, which allows for easy manipulation of large datasets with low memory usage.

Example Use


from nested_lookup import nested_lookup

my_document = {
   "name" : "Rocko Ballestrini",
   "email_address" : "test1@example.com",
   "other" : {
       "secondary_email" : "test2@example.com",
       "EMAIL_RECOVERY" : "test3@example.com",
       "email_address" : "test4@example.com",
    },
}

# retrieving all keys can be useful in dataset overview
from nested_lookup import get_all_keys
get_all_keys(my_document)
['name', 'email_address', 'other', 'secondary_email', 'EMAIL_RECOVERY', 'email_address']

# key/value stats can also be useful for data overview: 
from nested_lookup import get_occurrence_of_key, get_occurrence_of_value, get_occurrences_and_values
data = {"products": [{"category": "t-shirt"},{"category": "underwear"},{"category": "t-shirt"}]}

get_occurrence_of_key(data, key='category')
3
get_occurrence_of_value(data, value='t-shirt')
2
get_occurrences_and_values([data], "t-shirt")  # count t-shirt products
{
  't-shirt': {
    'occurrences': 2,
    'values': [{'category': 't-shirt'}, {'category': 't-shirt'}]
    }
  }

# it can also be used to delete/alter values:
from nested_lookup import nested_alter
data = {"products": [{"price": 10}, {"price": 14}]}

nested_alter(data, "price", lambda price: price * 1.4)
{'products': [{'price': 14.0}, {'price': 19.599999999999998}]}

nested_delete(data, "price")
{'products': [{}, {}]}
require 'kiba'

data = [{ name: 'Alice', age: 25 }, { name: 'Bob', age: 30 }]

Kiba.parse do
  source Kiba::Common::EnumerableSource, data
  transform { |row| row[:age] += 1 }
  destination Kiba::Common::EnumerableDestination
end.run

# Output: [{ name: 'Alice', age: 26 }, { name: 'Bob', age: 31 }]

Alternatives / Similar


Was this page helpful?