extractnetvssumy
ExtractNet is an automated web data extraction tool using machine learning to parse HTML and text data.
This tool can be used in web scraping to automatically extract details from scraped HTML documents. While it's not as accurate as structured extraction using HTML parsing tools like CSS selectors or XPath it can still parse a lot of details.
sumy is a Python library for automatic summarization of text documents. It can be used to extract summaries from various input formats such as plaintext, HTML, and URLs. It supports multiple languages and multiple summarization algorithms, including Latent Semantic Analysis (LSA), Luhn, Edmundson, TextRank, and SumBasic.
Example Use
import requests
from extractnet import Extractor
raw_html = requests.get('https://currentsapi.services/en/blog/2019/03/27/python-microframework-benchmark/.html').text
results = Extractor().extract(raw_html)
{'phone_number': '555-555-5555', 'email': 'example@example.com'}
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division, print_function, unicode_literals
from sumy.parsers.html import HtmlParser
from sumy.parsers.plaintext import PlaintextParser
from sumy.nlp.tokenizers import Tokenizer
from sumy.summarizers.lsa import LsaSummarizer as Summarizer
from sumy.nlp.stemmers import Stemmer
from sumy.utils import get_stop_words
LANGUAGE = "english"
SENTENCES_COUNT = 10
if __name__ == "__main__":
url = "https://en.wikipedia.org/wiki/Automatic_summarization"
parser = HtmlParser.from_url(url, Tokenizer(LANGUAGE))
# or for plain text files
# parser = PlaintextParser.from_file("document.txt", Tokenizer(LANGUAGE))
# parser = PlaintextParser.from_string("Check this out.", Tokenizer(LANGUAGE))
stemmer = Stemmer(LANGUAGE)
summarizer = Summarizer(stemmer)
summarizer.stop_words = get_stop_words(LANGUAGE)
for sentence in summarizer(parser.document, SENTENCES_COUNT):
print(sentence)