Skip to content

parse5vsfeedparser

MIT 35 7 3,682
211.9 million (month) Jul 03 2013 7.2.1(a month ago)
1,992 9 92 NOASSERTION
Jun 15 2007 5.4 million (month) 6.0.11(a year ago)

parse5 is a Node.js library for parsing and manipulating HTML and XML documents. It is designed to be fast and flexible, and it is commonly used in web scraping and web development projects.

parse5 is used by popular libraries such as Angular, Lit, Cheerio and many more. Unlike Cheerio parse5 is a low level html parsing library that might be useful directly in web scraping without higher level abstraction.

feedparser is a Python module for downloading and parsing syndicated feeds. It can handle RSS 0.90, Netscape RSS 0.91, Userland RSS 0.91, RSS 0.92, RSS 0.93, RSS 0.94, RSS 1.0, RSS 2.0, Atom 0.3, Atom 1.0, and CDF feeds. It also parses several popular extension modules, including Dublin Core and Appleā€™s iTunes extensions.

To use Universal Feed Parser, you will need Python 3.6 or later. Universal Feed Parser is not meant to run standalone; it is a module for you to use as part of a larger Python program.

feedparser can be used to scrape data feeds as it can download them and parse the XML structured data.

Example Use


const parse5 = require("parse5");

// parse string
const document = parse5.parse('<html><body>Hello World!</body></html>');
console.log(document);

// html tree can be traversed as javascript object:
const body = document.childNodes[1];
console.log(body.childNodes[0].value); // "Hello World!"

// and modified
const newElement = parse5.parseFragment('<p>New Element</p>');
body.appendChild(newElement.childNodes[0]);
console.log(parse5.serialize(document)); 
import feedparser

# the feed can be loaded from a remote URL
data = feedparser.parse('http://feedparser.org/docs/examples/atom10.xml')
# local path
data = feedparser.parse('/home/user/data.xml')
# or raw string
data = feedparser.parse('<xml>...</xml>')

# the result dataset is a nested python dictionary containing feed data:
data['feed']['title']

Alternatives / Similar


Was this page helpful?