Skip to content

geziyorvsferret

MPL-2.0 23 1 2,470
Jun 06 2019 2024-04-04(a day ago)
5,606 7 52 Apache-2.0
v0.18.0(1 year, 9 days ago) Aug 06 2019 58.1 thousand (month)

Geziyor is a blazing fast web crawling and web scraping framework. It can be used to crawl websites and extract structured data from them. Geziyor is useful for a wide range of purposes such as data mining, monitoring and automated testing.

Features:

  • JS Rendering
  • 5.000+ Requests/Sec
  • Caching (Memory/Disk/LevelDB)
  • Automatic Data Exporting (JSON, CSV, or custom)
  • Metrics (Prometheus, Expvar, or custom)
  • Limit Concurrency (Global/Per Domain)
  • Request Delays (Constant/Randomized)
  • Cookies, Middlewares, robots.txt
  • Automatic response decoding to UTF-8
  • Proxy management (Single, Round-Robin, Custom)

Ferret is a web scraping system. It aims to simplify data extraction from the web for UI testing, machine learning, analytics and more. ferret allows users to focus on the data. It abstracts away the technical details and complexity of underlying technologies using its own declarative language. It is extremely portable, extensible, and fast.

Features

  • Declarative language
  • Support of both static and dynamic web pages
  • Embeddable
  • Extensible

Ferret is always implemented in Python through pyfer

Example Use


// This example extracts all quotes from quotes.toscrape.com and exports to JSON file.
func main() {
    geziyor.NewGeziyor(&geziyor.Options{
        StartURLs: []string{"http://quotes.toscrape.com/"},
        ParseFunc: quotesParse,
        Exporters: []export.Exporter{&export.JSON{}},
    }).Start()
}

func quotesParse(g *geziyor.Geziyor, r *client.Response) {
    r.HTMLDoc.Find("div.quote").Each(func(i int, s *goquery.Selection) {
        g.Exports <- map[string]interface{}{
            "text":   s.Find("span.text").Text(),
            "author": s.Find("small.author").Text(),
        }
    })
    if href, ok := r.HTMLDoc.Find("li.next > a").Attr("href"); ok {
        g.Get(r.JoinURL(href), quotesParse)
    }
}
// Example scraper for Google in Ferret:
LET google = DOCUMENT("https://www.google.com/", {
    driver: "cdp",
    userAgent: "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.87 Safari/537.36"
})

HOVER(google, 'input[name="q"]')
WAIT(RAND(100))
INPUT(google, 'input[name="q"]', @criteria, 30)
WAIT(RAND(100))
CLICK(google, 'input[name="btnK"]')

WAITFOR EVENT "navigation" IN google

WAIT_ELEMENT(google, "#res")

LET results = ELEMENTS(google, X("//*[text() = 'Search Results']/following-sibling::*/*"))

FOR el IN results
    RETURN {
        title: INNER_TEXT(el, 'h3')?,
        description: INNER_TEXT(el, X("//em/parent::*")),
        url: ELEMENT(el, 'a')?.attributes.href
    }

Alternatives / Similar