Skip to content

autoscrapervsralger

MIT 13 2 6,161
9.2 thousand (month) Jul 26 2019 1.1.14(2 years ago)
156 1 3 MIT
Dec 22 2019 283 (month) 2.2.4(3 years ago)

Autoscraper project is made for automatic web scraping to make scraping easy. It gets a url or the html content of a web page and a list of sample data which we want to scrape from that page. This data can be text, url or any html tag value of that page. It learns the scraping rules and returns the similar elements. Then you can use this learned object with new urls to get similar content or the exact same element of those new pages.

Autoscraper is minimalistic and auto-generative approach to web scraping. For example, here's a scraper that finds all titles on a stackoverflow.com page:

from autoscraper import AutoScraper

url = 'https://stackoverflow.com/questions/2081586/web-scraping-with-python'

# We can add one or multiple candidates here.
# You can also put urls here to retrieve urls.
wanted_list = ["What are metaclasses in Python?"]

scraper = AutoScraper()
result = scraper.build(url, wanted_list)
print(result)

ralger is a small web scraping framework for R based on rvest and xml2.

It's goal to simplify basic web scraping and it provides a convenient and easy to use API.

It offers functions for retrieving pages, parsing HTML using CSS selectors, automatic table parsing and auto link, title, image and paragraph extraction.

Highlights


popularminimalisticauto-generating

Example Use


library("ralger")

url <- "http://www.shanghairanking.com/rankings/arwu/2021"

# retrieve HTML and select elements using CSS selectors:
best_uni <- scrap(link = url, node = "a span", clean = TRUE)
head(best_uni, 5)
#>  [1] "Harvard University"
#>  [2] "Stanford University"
#>  [3] "University of Cambridge"
#>  [4] "Massachusetts Institute of Technology (MIT)"
#>  [5] "University of California, Berkeley"

# ralger can also parse HTML attributes
attributes <- attribute_scrap(
  link = "https://ropensci.org/",
  node = "a", # the a tag
  attr = "class" # getting the class attribute
)

head(attributes, 10) # NA values are a tags without a class attribute
#>  [1] "navbar-brand logo" "nav-link"          NA
#>  [4] NA                  NA                  "nav-link"
#>  [7] NA                  "nav-link"          NA
#> [10] NA
#

# ralger can automatically scrape tables:
data <- table_scrap(link ="https://www.boxofficemojo.com/chart/top_lifetime_gross/?area=XWW")

head(data)
#> # A tibble: 6 × 4
#>    Rank Title                                      `Lifetime Gross`  Year
#>   <int> <chr>                                      <chr>            <int>
#> 1     1 Avatar                                     $2,847,397,339    2009
#> 2     2 Avengers: Endgame                          $2,797,501,328    2019
#> 3     3 Titanic                                    $2,201,647,264    1997
#> 4     4 Star Wars: Episode VII - The Force Awakens $2,069,521,700    2015
#> 5     5 Avengers: Infinity War                     $2,048,359,754    2018
#> 6     6 Spider-Man: No Way Home                    $1,901,216,740    2021

Alternatives / Similar


Was this page helpful?