Skip to content

curl-impersonatevsralger

MIT 60 1 3,452
Feb 23 2022 v0.6.1(4 months ago)
152 1 3 MIT
Dec 22 2019 1.0 thousand (month) 2.2.4(3 years ago)

Curl-impersonate is a special build of libcurl and cURL HTTP client that impersonates the four major browsers: - Google Chrome - Microsoft Edge - Safari - Firefox Curl-impersonate achieves this by patching TLS and HTTP fingerprints to be identical to that of one of these real browsers.

Unlike other HTTP clients curl-impersonate can bypass TSL and HTTP fingerprinting and detection techniques though it does not implement anything for Javascript fingerprint or bypass.

ralger is a small web scraping framework for R based on rvest and xml2.

It's goal to simplify basic web scraping and it provides a convenient and easy to use API.

It offers functions for retrieving pages, parsing HTML using CSS selectors, automatic table parsing and auto link, title, image and paragraph extraction.

Highlights


bypasshttp2tls-fingerprinthttp-fingerprintlow-level

Example Use


curl-impersonate installs itself under `curl_` terminal commands like `curl_chrome116`:
$ curl_chrome116 https://www.wikipedia.org
To use it in HTTP client libraries that use `libcurl` replace curl path with one of these. To use it in python directly see curl-cffi Python package
library("ralger")

url <- "http://www.shanghairanking.com/rankings/arwu/2021"

# retrieve HTML and select elements using CSS selectors:
best_uni <- scrap(link = url, node = "a span", clean = TRUE)
head(best_uni, 5)
#>  [1] "Harvard University"
#>  [2] "Stanford University"
#>  [3] "University of Cambridge"
#>  [4] "Massachusetts Institute of Technology (MIT)"
#>  [5] "University of California, Berkeley"

# ralger can also parse HTML attributes
attributes <- attribute_scrap(
  link = "https://ropensci.org/",
  node = "a", # the a tag
  attr = "class" # getting the class attribute
)

head(attributes, 10) # NA values are a tags without a class attribute
#>  [1] "navbar-brand logo" "nav-link"          NA
#>  [4] NA                  NA                  "nav-link"
#>  [7] NA                  "nav-link"          NA
#> [10] NA
#

# ralger can automatically scrape tables:
data <- table_scrap(link ="https://www.boxofficemojo.com/chart/top_lifetime_gross/?area=XWW")

head(data)
#> # A tibble: 6 × 4
#>    Rank Title                                      `Lifetime Gross`  Year
#>   <int> <chr>                                      <chr>            <int>
#> 1     1 Avatar                                     $2,847,397,339    2009
#> 2     2 Avengers: Endgame                          $2,797,501,328    2019
#> 3     3 Titanic                                    $2,201,647,264    1997
#> 4     4 Star Wars: Episode VII - The Force Awakens $2,069,521,700    2015
#> 5     5 Avengers: Infinity War                     $2,048,359,754    2018
#> 6     6 Spider-Man: No Way Home                    $1,901,216,740    2021

Alternatives / Similar


Was this page helpful?