Skip to content

ralgervsrvest

MIT 3 1 152
1.1 thousand (month) Dec 22 2019 2.2.4(3 years ago)
1,479 1 22 MIT
Nov 22 2014 612.5 thousand (month) 1.0.4(1 year, 9 months ago)

ralger is a small web scraping framework for R based on rvest and xml2.

It's goal to simplify basic web scraping and it provides a convenient and easy to use API.

It offers functions for retrieving pages, parsing HTML using CSS selectors, automatic table parsing and auto link, title, image and paragraph extraction.

rvest is a popular R library for web scraping and parsing HTML and XML documents. It is built on top of the xml2 and httr libraries and provides a simple and consistent API for interacting with web pages.

One of the main advantages of using rvest is its simplicity and ease of use. It provides a number of functions that make it easy to extract information from web pages, even for those who are not familiar with web scraping. The html_nodes and html_node functions allow you to select elements from an HTML document using CSS selectors, similar to how you would select elements in JavaScript.

rvest also provides functions for interacting with forms, including html_form, set_values, and submit_form functions. These functions make it easy to navigate through forms and submit data to the server, which can be useful when scraping sites that require authentication or when interacting with dynamic web pages.

rvest also provides functions for parsing XML documents. It includes xml_nodes and xml_node functions, which also use CSS selectors to select elements from an XML document, as well as xml_attrs and xml_attr functions to extract attributes from elements.

Another advantage of rvest is that it provides a way to handle cookies, so you can keep the session alive while scraping a website, and also you can handle redirections with handle_redirects

Example Use


library("ralger")

url <- "http://www.shanghairanking.com/rankings/arwu/2021"

# retrieve HTML and select elements using CSS selectors:
best_uni <- scrap(link = url, node = "a span", clean = TRUE)
head(best_uni, 5)
#>  [1] "Harvard University"
#>  [2] "Stanford University"
#>  [3] "University of Cambridge"
#>  [4] "Massachusetts Institute of Technology (MIT)"
#>  [5] "University of California, Berkeley"

# ralger can also parse HTML attributes
attributes <- attribute_scrap(
  link = "https://ropensci.org/",
  node = "a", # the a tag
  attr = "class" # getting the class attribute
)

head(attributes, 10) # NA values are a tags without a class attribute
#>  [1] "navbar-brand logo" "nav-link"          NA
#>  [4] NA                  NA                  "nav-link"
#>  [7] NA                  "nav-link"          NA
#> [10] NA
#

# ralger can automatically scrape tables:
data <- table_scrap(link ="https://www.boxofficemojo.com/chart/top_lifetime_gross/?area=XWW")

head(data)
#> # A tibble: 6 × 4
#>    Rank Title                                      `Lifetime Gross`  Year
#>   <int> <chr>                                      <chr>            <int>
#> 1     1 Avatar                                     $2,847,397,339    2009
#> 2     2 Avengers: Endgame                          $2,797,501,328    2019
#> 3     3 Titanic                                    $2,201,647,264    1997
#> 4     4 Star Wars: Episode VII - The Force Awakens $2,069,521,700    2015
#> 5     5 Avengers: Infinity War                     $2,048,359,754    2018
#> 6     6 Spider-Man: No Way Home                    $1,901,216,740    2021
library("rvest")

# Rvest can use basic HTTP client to download remote HTML:
tree <- read_html("http://webscraping.fyi/lib/r/rvest")
# or read from string:
tree <- read_html('
<div class="products">
  <a href="/product/1">Cat Food</a>
  <a href="/product/2">Dog Food</a>
</div>
')

# to parse HTML trees with rvest we use r pipes (the %>% symbol) and html_element function:
# we can use css selectors:
print(tree %>% html_element(".products>a") %>% html_text())
# "[1] "\nCat Food\nDog Food\n""

# or XPath:
print(tree %>% html_element(xpath="//div[@class='products']/a") %>% html_text())
# "[1] "\nCat Food\nDog Food\n""

# Additionally rvest offers many quality of life functions:
# html_text2 - removes trailing and leading spaces and joins values
print(tree %>% html_element("div") %>% html_text2())
# "[1] "Cat Food Dog Food""

# html_attr - selects element's attribute:
print(tree %>% html_element("div") %>% html_attr('class'))
# "products"

Alternatives / Similar


Was this page helpful?