chompjsvsralger
chompjs can be used in web scrapping for turning JavaScript objects embedded in pages into valid Python dictionaries.
In web scraping this is particularly useful for parsing Javascript variables like:
import chompjs
js = """
var myObj = {
myMethod: function(params) {
// ...
},
myValue: 100
}
"""
chompjs.parse_js_object(js, json_params={'strict': False})
{'myMethod': 'function(params) {\n // ...\n }', 'myValue': 100}
In practice this can be used to extract hidden JSON data like data from <script id=__NEXT_DATA__>
elements
from nextjs (and similar) websites. Unlike json.loads
command chompjs can ingest json documents that contain
javascript natives like functions making it a super easy way to scrape hidden web data objects.
ralger is a small web scraping framework for R based on rvest and xml2.
It's goal to simplify basic web scraping and it provides a convenient and easy to use API.
It offers functions for retrieving pages, parsing HTML using CSS selectors, automatic table parsing and auto link, title, image and paragraph extraction.
Example Use
# basic use
import chompjs
js = """
var myObj = {
myMethod: function(params) {
// ...
},
myValue: 100
}
"""
chompjs.parse_js_object(js, json_params={'strict': False})
{'myMethod': 'function(params) {\n // ...\n }', 'myValue': 100}
# example how to use with hidden data parsing:
import httpx
import chompjs
from parsel import Selector
response = httpx.get("http://example.com")
hidden_script = Selector(response.text).css("script#__NEXT_DATA__::text").get()
data = chompjs.parse_js_object(hidden_script)
print(data['props'])
library("ralger")
url <- "http://www.shanghairanking.com/rankings/arwu/2021"
# retrieve HTML and select elements using CSS selectors:
best_uni <- scrap(link = url, node = "a span", clean = TRUE)
head(best_uni, 5)
#> [1] "Harvard University"
#> [2] "Stanford University"
#> [3] "University of Cambridge"
#> [4] "Massachusetts Institute of Technology (MIT)"
#> [5] "University of California, Berkeley"
# ralger can also parse HTML attributes
attributes <- attribute_scrap(
link = "https://ropensci.org/",
node = "a", # the a tag
attr = "class" # getting the class attribute
)
head(attributes, 10) # NA values are a tags without a class attribute
#> [1] "navbar-brand logo" "nav-link" NA
#> [4] NA NA "nav-link"
#> [7] NA "nav-link" NA
#> [10] NA
#
# ralger can automatically scrape tables:
data <- table_scrap(link ="https://www.boxofficemojo.com/chart/top_lifetime_gross/?area=XWW")
head(data)
#> # A tibble: 6 × 4
#> Rank Title `Lifetime Gross` Year
#> <int> <chr> <chr> <int>
#> 1 1 Avatar $2,847,397,339 2009
#> 2 2 Avengers: Endgame $2,797,501,328 2019
#> 3 3 Titanic $2,201,647,264 1997
#> 4 4 Star Wars: Episode VII - The Force Awakens $2,069,521,700 2015
#> 5 5 Avengers: Infinity War $2,048,359,754 2018
#> 6 6 Spider-Man: No Way Home $1,901,216,740 2021