Skip to content

feedparservsralger

NOASSERTION 94 9 2,012
2.9 million (month) Jun 15 2007 6.0.11(1 year, 27 days ago)
156 1 3 MIT
Dec 22 2019 268 (month) 2.2.4(3 years ago)

feedparser is a Python module for downloading and parsing syndicated feeds. It can handle RSS 0.90, Netscape RSS 0.91, Userland RSS 0.91, RSS 0.92, RSS 0.93, RSS 0.94, RSS 1.0, RSS 2.0, Atom 0.3, Atom 1.0, and CDF feeds. It also parses several popular extension modules, including Dublin Core and Apple’s iTunes extensions.

To use Universal Feed Parser, you will need Python 3.6 or later. Universal Feed Parser is not meant to run standalone; it is a module for you to use as part of a larger Python program.

feedparser can be used to scrape data feeds as it can download them and parse the XML structured data.

ralger is a small web scraping framework for R based on rvest and xml2.

It's goal to simplify basic web scraping and it provides a convenient and easy to use API.

It offers functions for retrieving pages, parsing HTML using CSS selectors, automatic table parsing and auto link, title, image and paragraph extraction.

Example Use


import feedparser

# the feed can be loaded from a remote URL
data = feedparser.parse('http://feedparser.org/docs/examples/atom10.xml')
# local path
data = feedparser.parse('/home/user/data.xml')
# or raw string
data = feedparser.parse('<xml>...</xml>')

# the result dataset is a nested python dictionary containing feed data:
data['feed']['title']
library("ralger")

url <- "http://www.shanghairanking.com/rankings/arwu/2021"

# retrieve HTML and select elements using CSS selectors:
best_uni <- scrap(link = url, node = "a span", clean = TRUE)
head(best_uni, 5)
#>  [1] "Harvard University"
#>  [2] "Stanford University"
#>  [3] "University of Cambridge"
#>  [4] "Massachusetts Institute of Technology (MIT)"
#>  [5] "University of California, Berkeley"

# ralger can also parse HTML attributes
attributes <- attribute_scrap(
  link = "https://ropensci.org/",
  node = "a", # the a tag
  attr = "class" # getting the class attribute
)

head(attributes, 10) # NA values are a tags without a class attribute
#>  [1] "navbar-brand logo" "nav-link"          NA
#>  [4] NA                  NA                  "nav-link"
#>  [7] NA                  "nav-link"          NA
#> [10] NA
#

# ralger can automatically scrape tables:
data <- table_scrap(link ="https://www.boxofficemojo.com/chart/top_lifetime_gross/?area=XWW")

head(data)
#> # A tibble: 6 × 4
#>    Rank Title                                      `Lifetime Gross`  Year
#>   <int> <chr>                                      <chr>            <int>
#> 1     1 Avatar                                     $2,847,397,339    2009
#> 2     2 Avengers: Endgame                          $2,797,501,328    2019
#> 3     3 Titanic                                    $2,201,647,264    1997
#> 4     4 Star Wars: Episode VII - The Force Awakens $2,069,521,700    2015
#> 5     5 Avengers: Infinity War                     $2,048,359,754    2018
#> 6     6 Spider-Man: No Way Home                    $1,901,216,740    2021

Alternatives / Similar


Was this page helpful?