gracyvsralger
Gracy is an API client library based on httpx that provides an extra stability layer with:
- Retry logic
- Logging
- Connection throttling
- Tracking/Middleware
In web scraping, Gracy can be a convenient tool for creating scraper based API clients.
ralger is a small web scraping framework for R based on rvest and xml2.
It's goal to simplify basic web scraping and it provides a convenient and easy to use API.
It offers functions for retrieving pages, parsing HTML using CSS selectors, automatic table parsing and auto link, title, image and paragraph extraction.
Example Use
# 0. Import
import asyncio
from typing import Awaitable
from gracy import BaseEndpoint, Gracy, GracyConfig, LogEvent, LogLevel
# 1. Define your endpoints
class PokeApiEndpoint(BaseEndpoint):
GET_POKEMON = "/pokemon/{NAME}" # 👈 Put placeholders as needed
# 2. Define your Graceful API
class GracefulPokeAPI(Gracy[str]):
class Config: # type: ignore
BASE_URL = "https://pokeapi.co/api/v2/" # 👈 Optional BASE_URL
# 👇 Define settings to apply for every request
SETTINGS = GracyConfig(
log_request=LogEvent(LogLevel.DEBUG),
log_response=LogEvent(LogLevel.INFO, "{URL} took {ELAPSED}"),
parser={
"default": lambda r: r.json()
}
)
async def get_pokemon(self, name: str) -> Awaitable[dict]:
return await self.get(PokeApiEndpoint.GET_POKEMON, {"NAME": name})
# Note: since Gracy is based on httpx we can customized the used client with custom headers etc"
def _create_client(self) -> httpx.AsyncClient:
client = super()._create_client()
client.headers = {"User-Agent": f"My Scraper"}
return client
pokeapi = GracefulPokeAPI()
async def main():
try:
pokemon = await pokeapi.get_pokemon("pikachu")
print(pokemon)
finally:
pokeapi.report_status("rich")
asyncio.run(main())
library("ralger")
url <- "http://www.shanghairanking.com/rankings/arwu/2021"
# retrieve HTML and select elements using CSS selectors:
best_uni <- scrap(link = url, node = "a span", clean = TRUE)
head(best_uni, 5)
#> [1] "Harvard University"
#> [2] "Stanford University"
#> [3] "University of Cambridge"
#> [4] "Massachusetts Institute of Technology (MIT)"
#> [5] "University of California, Berkeley"
# ralger can also parse HTML attributes
attributes <- attribute_scrap(
link = "https://ropensci.org/",
node = "a", # the a tag
attr = "class" # getting the class attribute
)
head(attributes, 10) # NA values are a tags without a class attribute
#> [1] "navbar-brand logo" "nav-link" NA
#> [4] NA NA "nav-link"
#> [7] NA "nav-link" NA
#> [10] NA
#
# ralger can automatically scrape tables:
data <- table_scrap(link ="https://www.boxofficemojo.com/chart/top_lifetime_gross/?area=XWW")
head(data)
#> # A tibble: 6 × 4
#> Rank Title `Lifetime Gross` Year
#> <int> <chr> <chr> <int>
#> 1 1 Avatar $2,847,397,339 2009
#> 2 2 Avengers: Endgame $2,797,501,328 2019
#> 3 3 Titanic $2,201,647,264 1997
#> 4 4 Star Wars: Episode VII - The Force Awakens $2,069,521,700 2015
#> 5 5 Avengers: Infinity War $2,048,359,754 2018
#> 6 6 Spider-Man: No Way Home $1,901,216,740 2021