Skip to content

ferretvsralger

Apache-2.0 52 7 5,716
58.1 thousand (month) Aug 06 2019 v0.18.0(1 year, 7 months ago)
156 1 3 MIT
Dec 22 2019 289 (month) 2.2.4(3 years ago)

Ferret is a web scraping system. It aims to simplify data extraction from the web for UI testing, machine learning, analytics and more. ferret allows users to focus on the data. It abstracts away the technical details and complexity of underlying technologies using its own declarative language. It is extremely portable, extensible, and fast.

Features

  • Declarative language
  • Support of both static and dynamic web pages
  • Embeddable
  • Extensible

Ferret is always implemented in Python through pyfer

ralger is a small web scraping framework for R based on rvest and xml2.

It's goal to simplify basic web scraping and it provides a convenient and easy to use API.

It offers functions for retrieving pages, parsing HTML using CSS selectors, automatic table parsing and auto link, title, image and paragraph extraction.

Example Use


// Example scraper for Google in Ferret:
LET google = DOCUMENT("https://www.google.com/", {
    driver: "cdp",
    userAgent: "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.87 Safari/537.36"
})

HOVER(google, 'input[name="q"]')
WAIT(RAND(100))
INPUT(google, 'input[name="q"]', @criteria, 30)
WAIT(RAND(100))
CLICK(google, 'input[name="btnK"]')

WAITFOR EVENT "navigation" IN google

WAIT_ELEMENT(google, "#res")

LET results = ELEMENTS(google, X("//*[text() = 'Search Results']/following-sibling::*/*"))

FOR el IN results
    RETURN {
        title: INNER_TEXT(el, 'h3')?,
        description: INNER_TEXT(el, X("//em/parent::*")),
        url: ELEMENT(el, 'a')?.attributes.href
    }
library("ralger")

url <- "http://www.shanghairanking.com/rankings/arwu/2021"

# retrieve HTML and select elements using CSS selectors:
best_uni <- scrap(link = url, node = "a span", clean = TRUE)
head(best_uni, 5)
#>  [1] "Harvard University"
#>  [2] "Stanford University"
#>  [3] "University of Cambridge"
#>  [4] "Massachusetts Institute of Technology (MIT)"
#>  [5] "University of California, Berkeley"

# ralger can also parse HTML attributes
attributes <- attribute_scrap(
  link = "https://ropensci.org/",
  node = "a", # the a tag
  attr = "class" # getting the class attribute
)

head(attributes, 10) # NA values are a tags without a class attribute
#>  [1] "navbar-brand logo" "nav-link"          NA
#>  [4] NA                  NA                  "nav-link"
#>  [7] NA                  "nav-link"          NA
#> [10] NA
#

# ralger can automatically scrape tables:
data <- table_scrap(link ="https://www.boxofficemojo.com/chart/top_lifetime_gross/?area=XWW")

head(data)
#> # A tibble: 6 × 4
#>    Rank Title                                      `Lifetime Gross`  Year
#>   <int> <chr>                                      <chr>            <int>
#> 1     1 Avatar                                     $2,847,397,339    2009
#> 2     2 Avengers: Endgame                          $2,797,501,328    2019
#> 3     3 Titanic                                    $2,201,647,264    1997
#> 4     4 Star Wars: Episode VII - The Force Awakens $2,069,521,700    2015
#> 5     5 Avengers: Infinity War                     $2,048,359,754    2018
#> 6     6 Spider-Man: No Way Home                    $1,901,216,740    2021

Alternatives / Similar


Was this page helpful?