requestsvsralger
The requests package is a popular library for making HTTP requests in Python.
It provides a simple, easy-to-use API for sending HTTP/1.1 requests, and it abstracts away many of the low-level details of working with HTTP.
One of the key features of requests is its simple API. You can send a GET request with a single line of code:
import requests
response = requests.get('https://webscraping.fyi/lib/requests/')
pip install requests
ralger is a small web scraping framework for R based on rvest and xml2.
It's goal to simplify basic web scraping and it provides a convenient and easy to use API.
It offers functions for retrieving pages, parsing HTML using CSS selectors, automatic table parsing and auto link, title, image and paragraph extraction.
Highlights
syncease-of-useno-http2no-asyncpopular
Example Use
import requests
# get request:
response = requests.get("http://webscraping.fyi/")
response.status_code
200
response.text
"text"
response.content
b"bytes"
# requests can automatically convert json responses to Python dictionaries:
response = requests.get("http://httpbin.org/json")
print(response.json())
{'slideshow': {'author': 'Yours Truly', 'date': 'date of publication', 'slides': [{'title': 'Wake up to WonderWidgets!', 'type': 'all'}, {'items': ['Why <em>WonderWidgets</em> are great', 'Who <em>buys</em> WonderWidgets'], 'title': 'Overview', 'type': 'all'}], 'title': 'Sample Slide Show'}}
# for POST request it can ingest Python's dictionaries as JSON:
response = requests.post("http://httpbin.org/post", json={"query": "hello world"})
# or form data:
response = requests.post("http://httpbin.org/post", data={"query": "hello world"})
# Session object can be used to automatically keep track of cookies and set defaults:
from requests import Session
s = Session()
s.headers = {"User-Agent": "webscraping.fyi"}
s.get('http://httpbin.org/cookies/set/foo/bar')
print(s.cookies['foo'])
'bar'
print(s.get('http://httpbin.org/cookies').json())
{'cookies': {'foo': 'bar'}}
library("ralger")
url <- "http://www.shanghairanking.com/rankings/arwu/2021"
# retrieve HTML and select elements using CSS selectors:
best_uni <- scrap(link = url, node = "a span", clean = TRUE)
head(best_uni, 5)
#> [1] "Harvard University"
#> [2] "Stanford University"
#> [3] "University of Cambridge"
#> [4] "Massachusetts Institute of Technology (MIT)"
#> [5] "University of California, Berkeley"
# ralger can also parse HTML attributes
attributes <- attribute_scrap(
link = "https://ropensci.org/",
node = "a", # the a tag
attr = "class" # getting the class attribute
)
head(attributes, 10) # NA values are a tags without a class attribute
#> [1] "navbar-brand logo" "nav-link" NA
#> [4] NA NA "nav-link"
#> [7] NA "nav-link" NA
#> [10] NA
#
# ralger can automatically scrape tables:
data <- table_scrap(link ="https://www.boxofficemojo.com/chart/top_lifetime_gross/?area=XWW")
head(data)
#> # A tibble: 6 × 4
#> Rank Title `Lifetime Gross` Year
#> <int> <chr> <chr> <int>
#> 1 1 Avatar $2,847,397,339 2009
#> 2 2 Avengers: Endgame $2,797,501,328 2019
#> 3 3 Titanic $2,201,647,264 1997
#> 4 4 Star Wars: Episode VII - The Force Awakens $2,069,521,700 2015
#> 5 5 Avengers: Infinity War $2,048,359,754 2018
#> 6 6 Spider-Man: No Way Home $1,901,216,740 2021